The area of a square is 20 cm^ 2. Its side length is enlarged by a scale factor of 4. What is the area of the new square?
we know that
the area of a square is equal to
A=b^2
where
b is the length side
we have
A=20 cm^2
substitute
20=b^2
square root both sides
![\begin{gathered} b=\sqrt[]{20\text{ cm}} \\ b=2\sqrt[]{5\text{ cm}} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/fhvenwg5gl9q31bz6om2l2xp7hivyo3jw3.png)
the side length is enlarged by a scale factor of 4
so
the new length side is equal to
![\begin{gathered} b=4(2\sqrt[]{5)} \\ b=8\sqrt[]{5\text{ cm}} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/87hqlp6xamn0bry9bfa0cjyw3srydemwuw.png)
Find the new area
![\begin{gathered} A=(8\sqrt[]{5})^2 \\ A=320\text{ cm\textasciicircum{}2} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/tijhcr6hglo6crrt62k4ci4jlnp71gqsjx.png)
another way to find the area is multiply the original area by the scale factor squared
20
A=20(4^2)=320 cm^2