222k views
4 votes
Suppose the amount of oil pumped from a well decreases at a continuous rate of 9% per year. When, to the nearestyear, will the well's output fall to 1/8 of its present value?

User Kvvaradha
by
4.0k points

1 Answer

2 votes

We will use the next formula


y=y_0e^(-kt),_{}k>0_{}

where


y=(1)/(8)y_0

and


k=9\text{\%=0.09}

we substitute the values


(1)/(8)y_0=y_oe^(-0.09t)
(1)/(8)=e^(-0.09t)

then we take the natural logarithmic of both sides


\ln ((1)/(8))=\ln (e^(-0.09t))

we simplify


\ln ((1)/(8))=-0.09t

then we isolate the t


t=(\ln ((1)/(8)))/(-0.09)

then we obtain the value of t


t=23.1049

to the nearest year t=23 years

User Andrewdotnich
by
4.0k points