Answer
- The square root of 3249 is 57.
- The square root of 225 is 15.
Solution
- We are asked to calculate the square root of the two numbers below:
1. 3249
2. 225
- We can do this by finding the prime factorization of both numbers.

- Since we know that:
![\begin{gathered} \sqrt[]{a^2}=a \\ \text{And}\ldots \\ \sqrt[]{ab}=\sqrt[]{a}*\sqrt[]{b} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/w7p4e7vzvboqeul6p23rrahlb5wlvtsmk9.png)
- We can thus proceed to solve the questions:
Question 1
![\begin{gathered} \sqrt[]{3249}=\sqrt[]{3^2*19^2} \\ we\text{ can rewrite this as:} \\ \sqrt[]{3249}=\sqrt[]{3^2}*\sqrt[]{19^2} \\ \\ \sqrt[]{3249}=3*19 \\ \\ \therefore\sqrt[]{3249}=57 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/dbpaxitvkl36e1quhi6pnp13sw4u683m1p.png)
Question 2:
![\begin{gathered} \sqrt[]{225}=\sqrt[]{3^2*5^2} \\ \sqrt[]{225}=\sqrt[]{3^2}*\sqrt[]{5^2} \\ \\ \sqrt[]{225}=3*5=15 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/g2b14yh9yepiurov9k6cpw33hc3zrnrtf1.png)
Final Answer
- The square root of 3249 is 57.
- The square root of 225 is 15.