212k views
5 votes
Calculate the square root of 3249 and 225

User Neuront
by
4.4k points

1 Answer

3 votes

Answer

- The square root of 3249 is 57.

- The square root of 225 is 15.

Solution

- We are asked to calculate the square root of the two numbers below:

1. 3249

2. 225

- We can do this by finding the prime factorization of both numbers.


\begin{gathered} 3249=3*3*19*19=3^2*19^2 \\ 225=3*3*5*5=3^2*5^2 \end{gathered}

- Since we know that:


\begin{gathered} \sqrt[]{a^2}=a \\ \text{And}\ldots \\ \sqrt[]{ab}=\sqrt[]{a}*\sqrt[]{b} \end{gathered}

- We can thus proceed to solve the questions:

Question 1


\begin{gathered} \sqrt[]{3249}=\sqrt[]{3^2*19^2} \\ we\text{ can rewrite this as:} \\ \sqrt[]{3249}=\sqrt[]{3^2}*\sqrt[]{19^2} \\ \\ \sqrt[]{3249}=3*19 \\ \\ \therefore\sqrt[]{3249}=57 \end{gathered}

Question 2:


\begin{gathered} \sqrt[]{225}=\sqrt[]{3^2*5^2} \\ \sqrt[]{225}=\sqrt[]{3^2}*\sqrt[]{5^2} \\ \\ \sqrt[]{225}=3*5=15 \end{gathered}

Final Answer

- The square root of 3249 is 57.

- The square root of 225 is 15.

User Troyz
by
3.6k points