We are given the following situation:
Where:
![\begin{gathered} h_0=height\text{ of the object} \\ h_i=\text{ height of the image} \\ d_i=\text{ distance to the image} \\ d_0=\text{ distance of the object} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/b05am2z4si41pm5mcpcom0res6hjgpsev9.png)
We will determine the height of the image by determining the height of the mirror. To do we use the area of the mirror. If the mirror is a square then its area is given by:
![A=h^2](https://img.qammunity.org/2023/formulas/physics/college/1ueqplzyu6unquhp3dvx0ihfwoi9z4ezj7.png)
Substituting the value of the area:
![35.27cm^2=h^2](https://img.qammunity.org/2023/formulas/physics/college/dqkmvz1f3tynfpapq12ddma8x93etx8y3d.png)
Now, we take the square root to both sides:
![√(35.27cm^2)=h](https://img.qammunity.org/2023/formulas/physics/college/makmclea1z9ttvrvd5f9h6hn0xrbogglt7.png)
Solving the operations:
![5.9cm=h](https://img.qammunity.org/2023/formulas/physics/college/bcakxbhsqxpuwhdbs5zu3i3bqasp2vycpt.png)
Therefore, the height of the image is 5.9cm.
Now, we determine the magnification using the following formula:
![M=(h_i)/(h_0)](https://img.qammunity.org/2023/formulas/physics/college/584djsgesqlw0qri9rxbx2508mvla1a9jn.png)
Substituting the values in the formula we get:
![M=(0.059m)/(4.93m)=0.012](https://img.qammunity.org/2023/formulas/physics/college/ze3yt5aebkhkmj1nl6ow8c37lfwv2qhvrc.png)
The magnification is also equal to:
![M=-(d_i)/(d_o)](https://img.qammunity.org/2023/formulas/physics/college/cvv8pc6v0zrdocadj3gsjy6ltlh0rl7lcb.png)
Now, we solve for the distance of the object. First, we multiply both sides by the distance of the object:
![Md_o=-d_i](https://img.qammunity.org/2023/formulas/physics/college/h0wtdi8mn11zhz545ffn8jyahsbvetowbf.png)
Now, we divide both sides by the magnification:
![d_o=-(d_i)/(M)](https://img.qammunity.org/2023/formulas/physics/college/majavctxnv3dxbii9ttok91pfwlo80rlpu.png)
Now, we plug in the values:
![d_o=(-60.02cm)/(0.012)](https://img.qammunity.org/2023/formulas/physics/college/rordzxyiy4t5l3nomzt87pxzy1cyzf7epo.png)
Solving the operations:
![d_o=-5015.23cm](https://img.qammunity.org/2023/formulas/physics/college/7ha5vl4o5q91g8qytefufqooshyj5hhtju.png)
Now, the distance from the observer to the pole is the difference between the distance of the object and the distance of the image:
![d=d_0-d_i](https://img.qammunity.org/2023/formulas/physics/college/yx14htigz2m2upiigg3wymnbcaucqau4n7.png)
Substituting we get:
![d=5015.23cm-60.02cm=4955.2cm](https://img.qammunity.org/2023/formulas/physics/college/l4281f6pak3zqm09ng2vfvmvqxnt7d6wlw.png)
Therefore, the pole is at 4955.2 cm.