Ok, so
Here we have the following piecewise function.
First, notice that the yellow function is a function which comes from some changes to the function:
![y=\sqrt[]{x}](https://img.qammunity.org/2023/formulas/mathematics/college/z3kevgn2c29nk34ba6n3a5xhvm9rhyzg0b.png)
If we modify the previous function to get the yellow one, we obtain that the yellow function will be:
![y=-3\sqrt[]{-x-4}-1](https://img.qammunity.org/2023/formulas/mathematics/college/dokowxjnbt2xkidwcx4nk7pii9vkx815kw.png)
Notice that this function will exist if
![x\leq-4](https://img.qammunity.org/2023/formulas/mathematics/college/wbyliduw7a4eop30ks068n44n3753p9uvk.png)
Now, let's see the blue function. As you can see, it has the form of an absolute value function.
Now, our blue function is a function which comes from some changes to the function:
![y=\lvert x\rvert](https://img.qammunity.org/2023/formulas/mathematics/high-school/y1pjso61p9wmgz3l6wf7hsxtiollmxx8tf.png)
If we modify the previous function to get the blue one, we obtain that the blue function will be:
![y=\lvert(3)/(2)x+3\lvert-1](https://img.qammunity.org/2023/formulas/mathematics/college/ix59jreg5ivom8sqx030g4hmk5klcoi2j9.png)
Notice that the function exists if:
![-4Now and finally, the green function has the form of a translated cubic root.<p>Our green function is a function which comes from some changes to the function:</p>[tex]y=\sqrt[3]{x}](https://img.qammunity.org/2023/formulas/mathematics/college/b95j8kqpsuipilyekuh72etsci06ti325y.png)
If we modify the previous function to get the green one, we obtain that the green function will be:
![y=2\sqrt[3]{x-6}+4](https://img.qammunity.org/2023/formulas/mathematics/college/ds3zztu05dlphl5lca4y2lqeihcre6rt70.png)
As this is a piecewise function, we could write the solution as:
[tex]f(x)=\begin{cases}-3\sqrt[]{-x-4}-1\text{ if }x\leq-4 \\ y=\lvert\frac{3}{2}x+3\lvert-1\text{ if }4