Explanation
We are required to determine the LCD of the given expression.
![(-3)/(x+2)+(5x)/(x-1)-(x+2)/(x^2-3x+2)](https://img.qammunity.org/2023/formulas/mathematics/college/vfa8us5pgmai8oo3d7057y06t1zb4ass0q.png)
This is achieved thus:
- First, the demominators of the expression given are:
![\begin{gathered} x+2 \\ x-1 \\ x^2-3x+2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/pquahhg0swu6em84jxs6u0ki1n212vllrs.png)
- Next, we factorise the quadratic denominator as follows:
![\begin{gathered} x^2-3x+2 \\ x^2-x-2x+2 \\ (x^2-x)(-2x+2) \\ x(x-1)-2(x-1) \\ (x-1)(x-2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/byqwrxyv3rz3v093jeufhvvj0nal3ts3zk.png)
- Finally, the LCD can be calculated as:
Hence, the least common denominator is:
![(x-1)(x-2)(x+2)](https://img.qammunity.org/2023/formulas/mathematics/college/45h1vwiitg8z35raq56mu6nv11rmgj04xb.png)
Option C is correct.