112k views
3 votes
Assuming that these weights constitute an entire population, find the standard deviation of the population. ROUND YOUR ANSWER TO TWO DECIMAL PLACES

Assuming that these weights constitute an entire population, find the standard deviation-example-1

1 Answer

5 votes

Given that the dataset constitutes a population, we will need to use the two formulas below


\begin{gathered} \mu=(1)/(N)\sum_ix_i\rightarrow\text{ population mean} \\ \sigma=(√(\sum_i(x_i-\mu)^2))/(√(N))\rightarrow\text{ population standard deviation} \\ \end{gathered}

Thus, in our case,


\begin{gathered} \Rightarrow\mu=(1)/(5)(93+97+111+95+109)=(505)/(5)=101 \\ \Rightarrow\mu=101 \end{gathered}

Finding the standard deviation,


\begin{gathered} \Rightarrow\sigma=(√((93-101)^2+(97-101)^2+...+(109-101)^2))/(√(5)) \\ \Rightarrow\sigma=\sqrt{(280)/(5)}=√(56)\approx7.48 \end{gathered}

Thus, the standard deviation of the population is 7.48

User Davidyaha
by
4.2k points