136k views
0 votes
Find the exact value, without acalculator.30°sin 15°sintan 15° =2cos 15°30°COS2

Find the exact value, without acalculator.30°sin 15°sintan 15° =2cos 15°30°COS2-example-1
User Rainbacon
by
8.0k points

1 Answer

3 votes

The problem stated that


\tan 15=(\sin 15)/(\cos 15)=(\sin(30)/(2))/(\cos(30)/(2))

whereas sin 15 and cos 15 can be evaluated using half-angle formula. The half-angle formula for sine function is


\sin (\theta)/(2)=\sqrt[]{(1-\cos \theta)/(2)}

while the half-angle formula for cosine function is


\cos (\theta)/(2)=\sqrt[]{(1+\cos \theta)/(2)}

The theta value to evaluate the half-angle formula for tangent 15 is 30 degrees. We now proceed in calculating the value of the trigonometric function.


\begin{gathered} \sin (30)/(2)=\sqrt[]{(1-\cos30)/(2)} \\ \cos (30)/(2)=\sqrt[]{(1+\cos30)/(2)} \end{gathered}

The exact value of cosine 30 is √3/2, hence, the equation above now becomes


\begin{gathered} \sin (30)/(2)=\sqrt[]{\frac{1-\frac{\sqrt[]{3}}{2}}{2}} \\ \cos (30)/(2)=\sqrt[]{\frac{1+\frac{\sqrt[]{3}}{2}}{2}} \end{gathered}

Simplifying the equations above


\begin{gathered} \sin (30)/(2)=\sqrt[]{\frac{\frac{2-\sqrt[]{3}}{2}}{2}}=\sqrt[]{\frac{2-\sqrt[]{3}}{4}} \\ \cos (30)/(2)=\sqrt[]{\frac{\frac{2+\sqrt[]{3}}{2}}{2}=}\sqrt[]{\frac{2+\sqrt[]{3}}{4}} \end{gathered}

Since tangent theta is the ratio between the sin function and the cosine function, getting the ratio of the two equations above will result to


(\sin(30)/(2))/(\cos(30)/(2))=\tan 15=\frac{\sqrt[]{\frac{2-\sqrt[]{3}}{4}}}{\sqrt[]{\frac{2+\sqrt[]{3}}{4}}}

Simplifying,


\begin{gathered} \tan 15=\sqrt[]{\frac{2-\sqrt[]{3}}{4}}\cdot\sqrt[]{\frac{4}{2+\sqrt[]{3}}} \\ \tan 15=\frac{\sqrt[]{2-\sqrt[]{3}}}{\sqrt[]{2+\sqrt[]{3}}}=\sqrt[]{\frac{2-\sqrt[]{3}}{2+\sqrt[]{3}}} \end{gathered}

Where the equation above shows the exact value of tan 15.

User Varatis
by
7.7k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories