Answer:
y = -2.5x + 50
Explanations:
Considering the values on the table:
![\begin{gathered} x_1=0,x_2=8,x_3=12 \\ y_1=50,y_2=30,y_3=20 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/psuiutdfd1k8fy8spr4g1yd4z30jtvsvhl.png)
Since the question has already said there is a linear relationship between the value left on the card (y) and the number of car washes (x), there will be a constant slope(m) on the graph
![\begin{gathered} m\text{ = }(y_2-y_1)/(x_2-x_1) \\ m\text{ = }(30-50)/(8-0) \\ m\text{ = }(-20)/(8) \\ m\text{ = -2.5} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/anvdgswil9rfqfcvuwtnwzw1u77jmqsltb.png)
The equation of a line having a slope, m, and passing through the point
(x₁, y₁) is given as:
![\begin{gathered} y-y_1=m(x-x_1) \\ y\text{ - 50= -2.5(x - 0)} \\ y\text{ - 50 = -2.5x} \\ y\text{ = -2.5x + 50} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/wgmc1j8m8lbxmqcmqdn1gs7ey6l7p357fc.png)
The equation that shows the number of dollars left on the card is:
y = -2.5x + 50