we have the equation
![sinx-5=cosx-5](https://img.qammunity.org/2023/formulas/mathematics/college/8m6u54jcotyc0bqvdo5e4l7jtou63y3v8u.png)
Simplify
![\begin{gathered} s\imaginaryI nx-5=cosx-5 \\ s\imaginaryI nx=cosx-5+5 \\ sinx=cosx \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/nn8dkoo3k16yhnplsz89lsay5vk6itj4vq.png)
Remember that
The function sine is equal to the function cosine when the angle x is 45 degrees (pi/4)
so
I quadrant ---------> pi/4
II quadrant ----> No solution (different signs)
III quadrant -------> pi+pi/4=5pi/4
IV quadrant ----> No solution (different signs)
therefore
The answer is
x=pi/4,5pi/4