Step 1: Write the two equations

Step 2: Make x square the subject of the formula from equation 2.

Step 3: Substitute x square in equation 1

Step 4: Use the factorization method to solve for y.

Step 5: Split -8y into -3y and -5y

Step 6: Find the corresponding values of x, by substituting y in any equation.
Substitute y in equation 2.
![\begin{gathered} \text{Equation 2: y}^2-9=x^2 \\ \text{for y = 3} \\ 3^2-9=x^2 \\ 9-9=x^2 \\ x^2\text{ = 0} \\ \text{x = }\sqrt[]{0} \\ \text{x = 0} \\ \text{for x = 5} \\ 5^2-9=x^2 \\ 25-9=x^2 \\ 16=x^2 \\ x\text{ = }\sqrt[]{16} \\ x\text{ = }\pm\text{4} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8om2i7a011yhaq0in9qdh42l6zrb3i84lw.png)
Step 7: Final answer
Coordinates of the point of intersection are:
(0,3) , (4, 5) and (-4, 5)