37.1k views
3 votes
A. Use substitution to solve for two values of yB. Using the values of y you just found, find the coordinates of the points of intersection of these two shapes. Write answers in (x,y) form

A. Use substitution to solve for two values of yB. Using the values of y you just-example-1

1 Answer

7 votes

Step 1: Write the two equations


\begin{gathered} x^2+y^2\text{ - 16y + 39 = 0 ----------- (1)} \\ y^2-x^2\text{ - 9 = 0 --------------- (2)} \end{gathered}

Step 2: Make x square the subject of the formula from equation 2.


\begin{gathered} y^2-x^2\text{ - 9 = 0} \\ y^2-9=x^2 \end{gathered}

Step 3: Substitute x square in equation 1


\begin{gathered} \text{Equation 1: x}^2+y^2\text{ - 16y + 39 = 0} \\ y^2-9+y^2\text{ - 16y + 39 = 0} \\ \text{Add similar terms} \\ 2y^2\text{ - 16y + 30 = 0} \\ \text{Divide through by 2} \\ y^2\text{ - 8y + 15 = 0} \end{gathered}

Step 4: Use the factorization method to solve for y.


\begin{gathered} y^2\text{ - 8y + 15 = 0} \\ To\text{ factorize, choose two number when added will give -8 and} \\ \text{when multiply will give +15.} \\ \text{The two intergers are -3 and -5.} \end{gathered}

Step 5: Split -8y into -3y and -5y


\begin{gathered} y^2\text{ - 3y - 5y + 15 = 0} \\ \text{Pair two terms and factor out common factor.} \\ y(y\text{ - 3) - 5(y - 3) = 0} \\ (y\text{ - 3)(y - 5) = 0} \\ y\text{ - 3 = 0 or y - 5 = 0} \\ y\text{ = 3 or 5} \end{gathered}

Step 6: Find the corresponding values of x, by substituting y in any equation.

Substitute y in equation 2.


\begin{gathered} \text{Equation 2: y}^2-9=x^2 \\ \text{for y = 3} \\ 3^2-9=x^2 \\ 9-9=x^2 \\ x^2\text{ = 0} \\ \text{x = }\sqrt[]{0} \\ \text{x = 0} \\ \text{for x = 5} \\ 5^2-9=x^2 \\ 25-9=x^2 \\ 16=x^2 \\ x\text{ = }\sqrt[]{16} \\ x\text{ = }\pm\text{4} \end{gathered}

Step 7: Final answer

Coordinates of the point of intersection are:

(0,3) , (4, 5) and (-4, 5)

User Fraser Speirs
by
5.8k points