Explanations:
a) Given the equation of a curve expressed as:
![y=x^3-5x^2+7x-2](https://img.qammunity.org/2023/formulas/mathematics/college/2htft2jqdsg23v09nvnbfky64x5dhian2f.png)
On differentiating the function, we will have:
![\begin{gathered} (dy)/(dx)=3x^(3-1)-2(5)x^(2-1)+7 \\ (dy)/(dx)=3x^2-10x+7 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/fe7bm2grjodnp35rhyxyvz017eh2ser77g.png)
If the dy/dx = 0, then the x-ccordinates will be:
![\begin{gathered} 3x^2-10x+7=0 \\ 3x^2-3x-7x+7=0 \\ 3x(x-1)-7(x-1)=0 \\ (3x-7)(x-1)=0 \\ x=(7)/(3)and\text{ 1} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/p9w41rj94m8e72t0aytqan1h8gwfiwnfdc.png)
Determine the turning points
If x = 7/3 then;
![\begin{gathered} y=((7)/(3))^3^{}-5((7)/(3))^2+7((7)/(3))-2 \\ y=(343)/(27)-(245)/(9)+(49)/(3)-(2)/(1) \\ y=(343-735+441-54)/(27) \\ y=-(5)/(27) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/g4a6x167613pua06d37pgs31aqxv058wtr.png)
One of the turning points is (7/3, -5/27)
if x = 1 then;
![\begin{gathered} y=x^3-5x^2+7x-2 \\ y=1^3-5(1)^2+7(1)-2 \\ y=1-5+7-2 \\ y=1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/jvho5zwqbnkxsxmbuknx86ki4843fs6gu8.png)
The other turning point is at (1, 1)
b) To get the minimum and maximum point, we will find the second derivative of the function as shown:
![\begin{gathered} f^(\doubleprime)(x)=6x-10 \\ \text{If x = 7/3} \\ f^(\doubleprime)((7)/(3))=6((7)/(3))-10 \\ f^(\doubleprime)((7)/(3))=(42)/(3)-10 \\ f^(\doubleprime)((7)/(3))=(12)/(3)=4>0 \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/766rwi1ssxua7c31zrdigwf14oeqz57zdr.png)
Since f''(x) > 0 at the point where x = 7/3, hence the turning point (7/3, -5/27) is at the minimum
At the point where x = 1,
![\begin{gathered} f^(\prime)(1)=6(1)-10 \\ f^(\doubleprime)(1)=6-10 \\ f^(\doubleprime)(1)=-4<0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3llaix1um26nib6gyzk0scx6l2i9fej4en.png)
Since f''(x) > 0 at the point where x = 1, hence the turning point (1, 1) is at the maximum point.
c) To sketch the turning points (1, 1), and (7/3, -5/27)
To get other points, at x = 2
![\begin{gathered} y=2^3-5(2)^2+7(2)-2 \\ y=8-20+14-2 \\ y=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/c8lvk3fk60r73l2nnye9zkoqbwb6j58dpf.png)
Another coordinate point will be at (2, 0)