![A=70-510ft^(2)](https://img.qammunity.org/2023/formulas/mathematics/college/mbesla0qfx6kf0riiktsjkeilf4kw65nvd.png)
1) Note that this is a rectangle, so we can use the formula for the Area of a rectangle. So let's write it out and then plug into that the given measures:
![\begin{gathered} A=(-5√(2)+5√(5))(3√(2)+4√(5)) \\ A=(-5√(2)\cdot\:3√(2)-5√(2)\cdot\:4√(5)+5√(5)\cdot\:3√(2)+5√(5)\cdot\:4√(5)) \\ A=-15√(2^2)-20√(2)√(5)+15√(5)√(2)+100 \\ A=-30-20√(10)+15√(10)+100 \\ A=70-5√(10) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4204ah0zt5wuayxp7u4lfn9w87dr1tv6uf.png)
We can simplify those square roots and combine the terms with the same radical. So we can tell the area is:
![A=70-510ft^2](https://img.qammunity.org/2023/formulas/mathematics/college/nfynchia8yeexsnb8l52l5x3g5m7o9grmo.png)