Given:
![\begin{gathered} P=7,161 \\ r=4.84\% \\ A=2P \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/agi54qxiz2xlyh9duv0tjb3k0e8exjf3c5.png)
To Determine: How long it will take the fund to be worth double the amount
Solution
The formula for finding the amount for a compound interest is given as
![\begin{gathered} A=P(1+r)^t \\ A=Amount \\ P=Principal \\ r=rate \\ t=time \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/bw4kmnrd09autyqxwcae0rkr0leqcg6t8f.png)
Substitute the given into the formula
![\begin{gathered} 2P=P(1+0.0484)^t \\ 2P=P(1.0484)^t \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/fega9w2469qyjjpe5zi3j47gnnorek9k75.png)
![\begin{gathered} 1.0484^t=(2P)/(P) \\ 1.0484^t=2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/sc72daxu22ig082jzod0c8ot3pgczgra6v.png)
![\begin{gathered} t* ln(1.0484)=ln(2) \\ t=(ln(2))/(ln(1.0484) \\ t=14.66506 \\ t\approx15years \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/jmdnu3iehbkae52w7l4vdzwh6xefy29waw.png)
Hence, the time it will the investment to be doubled is 15 years