If the two lines are perpendicular then the products of thier slope is ( -1 )
The general form of equation of line :
![y-y_1=m(x-x_1)](https://img.qammunity.org/2023/formulas/mathematics/high-school/csobd57zth7rh9k4hz9amldzpq2owf0z4j.png)
where, m = slope, (x1, y1) are the passing point
The given equation of line : 2x - 7y = -6
Simplify in the general form
![\begin{gathered} 2x-7y=-6 \\ 2x+6=7y \\ 7y=2x+6 \\ y=(2)/(7)x+(6)/(7) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/iafs0l9i3xhvgtynbqpyq12dwxaiuso7li.png)
On comparing with the general form of line, we get slope = 2/7
Let the slope of the perpendicular line is m
Thus, from the slope creteria of perpendicular line : m(2/7)=-1
![\begin{gathered} m((2)/(7))=-1 \\ m=(-7)/(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/502s6a8l7s66u0a0gf9m4q9lgjqmbl18a4.png)
Substitute the passing point(-2,6) and slope m = -7/2 in the equation of line.
![\begin{gathered} y-y_1=m(x-x_1) \\ y-6=(-7)/(2)(x-(-2)) \\ y-6=(-7)/(2)(x\text{ +2)} \\ y-6=(-7)/(2)x-(-14)/(2) \\ y=-(7)/(2)x+7+6 \\ y=(-7)/(2)x+13 \\ 2y=-7x+26 \\ 7x+2y=26 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/b12fkr8g6r2djaynqdo4q09qi4298feqp6.png)
Equation of perpendicular line is 7x + 2y = 26
Answer : 7x + 2y = 26