Answer:
![\sqrt[]{14}](https://img.qammunity.org/2023/formulas/mathematics/college/nymrfplqgf43tx7oh0e0ewj732b7z2ywgy.png)
Step-by-step explanation:
From the figure above, we can see that AB and CD are equal, so y = 5cm.
Let's go ahead and find h using Pythagorean theorem;
![\begin{gathered} 6^2=y^2+h^2 \\ 6^2=5^2+h^2 \\ 36=25+h^2 \\ h^2=36-25 \\ \therefore h=\sqrt[]{11} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/l613f552zlyl669q31d7nrnoqdqzaowy62.png)
Since we know h now, let's go ahead and solve for x by applying same Pythagorean theorem on triangle ABC;
![\begin{gathered} 5^2=h^2+x^2 \\ 25=(\sqrt[]{11})^2+x^2 \\ 25=11+x^2 \\ 25-11=x^2 \\ 14=x^2 \\ \therefore x=\sqrt[]{14} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4pntf7f475m7l3fefi0604isiu39qwmhot.png)