ANSWER
Option B
Step-by-step explanation
We want to find the expression that is equivalent to:
![\log 250](https://img.qammunity.org/2023/formulas/mathematics/college/8t9wq4elpcv3cs7jswfz7q8k5l4c6o12o2.png)
To do this, we have to express 250 as an exponent of 10.
That is:
![\log ((1000)/(4))](https://img.qammunity.org/2023/formulas/mathematics/college/ash8vk85jqwibm2ke6ud4gqcqzriva2zms.png)
Now, we can separate the terms using one of the laws of logarithm that states that:
![\log ((a)/(b))=\log a-\log b](https://img.qammunity.org/2023/formulas/mathematics/college/a4awfiolwwq0dd861bky41mjx74fofoyxc.png)
Therefore, we have that:
![\log 1000-\log 4](https://img.qammunity.org/2023/formulas/mathematics/college/pu8f2yd898xooyzy2meqkx2jh7xo5nroat.png)
Now, simplifying further, we have:
![\begin{gathered} \log 10^3-\log 4 \\ \Rightarrow3\log 10-\log 4 \\ \Rightarrow3-\log 4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qm11jg4so7wwpvs6bj72o8axweyms359kw.png)
The answer is option B.