Answer:
53
Step-by-step explanation:
Let the first integer = n
• The second consecutive integer = n+1
,
• The third consecutive integer = n+2
If the sum of the integers is 156, then:
![n+(n+1)+(n+2)=156](https://img.qammunity.org/2023/formulas/mathematics/high-school/eprxay6bmqiddttgdsayxmj8uj1t01mbfu.png)
Solve for n.
![\begin{gathered} n+n+n+1+2=156 \\ 3n+3=156 \\ 3n=156-3 \\ 3n=153 \\ n=(153)/(3) \\ n=51 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/jbj9lfdowb1sh17o03vibhfne7sskoarq4.png)
Thus, the value of the greatest consecutive integer will be:
![\begin{gathered} n+2=51+2 \\ =53 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/qispjltsmn7426orfz042ddes0pioten0i.png)