SOLUTION
Newton's law of cooling states that the rate of change of temperature is proportional to the difference to the ambient temperature.
So, from here we have
![\begin{gathered} (dT)/(dt)\propto T-T_0 \\ If\text{ T}>T_0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/q1tu3r7mz7fvyoi27ei04j3f780nqjrgtq.png)
then the body should cool so the derivative should be negative, hence we insert the proportionality constant and arrive at
![\begin{gathered} (dT)/(dt)=-k(T-T_0) \\ (dT)/(dt)+kT=kT_0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/709pe3g5y3z2r22w9b5oqyocqcnlmdya8s.png)
Can now use the integrating factor method of solving ODEs.
![I(x)=e^(\int kdt)=e^(kt)](https://img.qammunity.org/2023/formulas/mathematics/college/5eeim5iz6q6ww9tqulhtflsgqdxkpzugbv.png)
Multiplying both sides by I(x) we get
![e^(kt)(dT)/(dt)+e^(kt)kT=e^(kt)kT_0](https://img.qammunity.org/2023/formulas/mathematics/college/od31luxx5ib23co1fotweo4kgs7b8di4jz.png)
Notice that by using the product rule we can rewrite the LHS, leaving:
![(d)/(dt)[Te^(kt)]=e^(kt)kT_0](https://img.qammunity.org/2023/formulas/mathematics/college/kb6gpa01j0szcohyew4fua0453anz11dy9.png)
Integrate both sides with respect to t, we have
![\begin{gathered} Te^(kt)=kT_0\int e^(kt)dt \\ Te^(kt)=T_0e^(kt)+C \\ divide\text{ by }e^(kt) \\ T(t)=T_0+Ce^(-kt) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/p8pxkwdxsn19bvuwujx5mxz67laiwj9qb1.png)
Average human body temperature is 98.6 degree fahrenheit, we have
![\begin{gathered} T(0)=98.6 \\ 98.6=40+Ce^0 \\ C=58.6 \\ Let\text{ t}_f\text{ be the time at which body is found} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/2f61adxc9ael2y7k565zsq1hffr7kfgetr.png)
we have
![\begin{gathered} T(t_f)=80 \\ 80=40+58.6e^(-kt_f) \\ e^(-kt_f)=(40)/(58.6) \\ ln((40)/(58.6))=-kt_f \\ t_f=-(ln((40)/(58.6)))/(k) \\ t_f=(ln((40)/(58.6)))/(0.1947) \\ t_f=1.96hr \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/jgg417yfyyws6j7tld06uqtkzw0n7ivefr.png)
So from time of death, assuming body immediately started to cool, it took 1.96 hours to reach 80°F at which point it was found.
1.96 hr = 117,6 mins subtracting from 10 a.m, approximate time of death is 8 : 02 : 24 am
Hence the answer is
8 : 02 : 24 am