Given:
The angular velocity is
![\omega_1=\text{ 10 units}](https://img.qammunity.org/2023/formulas/physics/college/ctzn8lgrjxddvjooox6frzqs81rqym2rxg.png)
The rotational inertia is
![I_1=\text{ 20 units}](https://img.qammunity.org/2023/formulas/physics/college/c1b1c4loku6ph23xvqohfylnsg8mpcj2x7.png)
To find the angular speed when rotational inertia is
![I_2=\text{ 10 units}](https://img.qammunity.org/2023/formulas/physics/college/996d8r1whpw2dl0pa5nql20gbrfjgeuxwt.png)
Step-by-step explanation:
According to the conservation of angular momentum,
![I_1\omega_1=I_2\omega_2](https://img.qammunity.org/2023/formulas/physics/college/h1dfns3xkkldlzhyjbov2ico7ow717rtib.png)
The angular speed can be calculated as
![\begin{gathered} \omega_2=(I_1\omega_1)/(I_2) \\ =(20*10)/(10) \\ =20\text{ units} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/h6sg0qarqhx0yjtnqyd6j11e4p613t1ggo.png)
Thus, the angular speed is 20 units when the rotational inertia is 10 units.