11. The exponential function that models the growth is as follows:
![y=5000(1.16)^t](https://img.qammunity.org/2023/formulas/mathematics/college/qv21p5a86to6wvnpa07ofiyrdsfkn6bhc6.png)
Where t is the time in hours. In this case, if we double the population we have to:
y = 5000 x 2 = 10000
Therefore, substitute y = 10000 in the function and solve for t:
![10000=5000\left(1.16\right)^t](https://img.qammunity.org/2023/formulas/mathematics/college/fq3x53t9j8xeqhyn7ifs344vp0vhucfvpn.png)
Divide both sides by 5000:
![\begin{gathered} (10000)/(5000)=(5000(1.16)^t)/(5000) \\ 2=(1.16)^t \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/hhvs3jkx9zyqaad96un9gpz8yiy8rarpuh.png)
Apply the laws of exponents:
![ln(2)=tln(1.16)](https://img.qammunity.org/2023/formulas/mathematics/college/ncoz6tvbkaigzn0bkvegsaglfae7qw3xjg.png)
Solve for t:
![t=(ln(2))/(ln(1.16))=4.7](https://img.qammunity.org/2023/formulas/mathematics/college/94esgzcb52jgh6ldobd2l1h5t5xb6aknae.png)
Answer: B. 4.7 hours