Given:
There are given that the initial payment is $6100 and the interest is 2.9% compounded monthly.
Step-by-step explanation:
According to the question:
We need to find the monthly payment.
Then,
To find the monthly payment, we will use the compound interest monthly formula:
So,
From the formula:
![A=P(1+(r)/(n))^(nt)-P](https://img.qammunity.org/2023/formulas/mathematics/college/lqske1ma1uzhxq1apw66nm0ecwfe82gy3e.png)
Where,
![\begin{gathered} P=6100 \\ r=2.9\%=0.029 \\ t=5 \\ n=12 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/nlfsvz11rknrz2yp6pmer9yt0mxx2n865q.png)
Then,
Put all the values into the above formula:
So,
![\begin{gathered} A=P(1+(r)/(n))^(nt)-P \\ A=6100(1+(0.029)/(12))^(12(5))-6100 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ygp2khwhos8vq0ovg9ymuw6z21wguwg8qj.png)
So,
![\begin{gathered} A=6100(1+(0.029)/(12))^(12(5))-6100 \\ A=6100(1+0.002)^(60)-6100 \\ A=6100(1.002)^(60)-6100 \\ A=6100(1.127)-6100 \\ A=6874.7-6100 \\ A=774.7 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/493v3h6qhmscn4os0v3a5ldz3k7mr5lamx.png)
Final answer:
Hence, the value of the monthly payment is $775.