105k views
2 votes
Let F(x) = f(x ^ 9) and G(x) = (f(x)) ^ 9 You also know that a ^ 8 = 5 , f(a) = 2; f^ prime (a)=15, f^ prime (a^ 9 )=6

Let F(x) = f(x ^ 9) and G(x) = (f(x)) ^ 9 You also know that a ^ 8 = 5 , f(a) = 2; f-example-1
User Pquest
by
7.9k points

1 Answer

2 votes

Solution

- The solution steps are given below;

Question 1


\begin{gathered} F(x)=f(x^9) \\ \text{ Let }x^9=u \\ F(u)=f(u) \\ F^(\prime)(u)=(d)/(du)F(u)=f^(\prime)(u) \\ \\ (du)/(dx)=(d)/(dx)(x^9)=9x^8 \\ \\ F^(\prime)(x)=(d)/(du)F(u)*(du)/(dx) \\ \\ F^(\prime)(x)=f^(\prime)(u)*9x^8 \\ \\ F^(\prime)(x)=f^(\prime)(x^9)*9x^8 \\ \\ \text{ Thus, put }x=a \\ \\ F^(\prime)(a)=f^(\prime)(a^9)*9a^8 \\ \text{ But we have been given:} \\ f^(\prime)(a^9)=6 \\ a^8=5 \\ \\ \therefore F^(\prime)(a)=5*6=30 \end{gathered}

Question 2:


\begin{gathered} G(x)=(f(x))^9 \\ \text{ Let }u=f(x) \\ (d)/(dx)u=u^(\prime)=f^(\prime)(x) \\ \\ G(u)=u^9 \\ (d)/(du)G(u)=G^(\prime)(u)=9u^8 \\ \\ (d)/(du)G(u)*(d)/(dx)u=f^(\prime)(x)*9u^8 \\ \\ G^(\prime)(x)=f^(\prime)(x)*9(f(x))^8 \\ \\ put\text{ }x=a \\ \\ G^(\prime)(a)=f^(\prime)(a)*9(f(a))^8 \\ \text{ We know that:} \\ f^(\prime)(a)=15 \\ f(a)=2 \\ \\ \text{ Thus, we have:} \\ G^(\prime)(a)=15*9(2)^8 \\ G^(\prime)(a)=34560 \end{gathered}

User RichVel
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories