187k views
2 votes
18a4w + 168a²bk – 72a4k – 42a²bw

User Systemkern
by
4.0k points

1 Answer

1 vote

Answer:

Factoring the expression with the GCF will give;


6a^2(3a^2w^{}+28^{}bk^{}-12a^2k^{}-7bw^{})^{}

Step-by-step explanation:

Given the expression;


18a^4w+168a^2bk-72a^4k-42a^2bw

Let us find the greatest common factor of the expressions;


\begin{gathered} 18a^4w+168a^2bk-72a^4k-42a^2bw \\ 18a^4w=2*3*3* a* a* a* a* w \\ 168a^2bk=2*2*2*3*7* a* a* b* k \\ -72a^4k=-1*2*2*2*3*3* a* a* a* a* k \\ -42a^2bw=-1*2*3*7* a* a* b* w \\ \text{GCF}=2*3* a* a=6a^2 \end{gathered}

Therefore, the greatest common factor of the expressions is;


6a^2

Factoring the expression;


\begin{gathered} 18a^4w+168a^2bk-72a^4k-42a^2bw \\ =6a^2((18a^4w+168a^2bk-72a^4k-42a^2bw))/(6a^2) \\ =6a^2((18a^4w)/(6a^2)+(168a^2bk)/(6a^2)-(72a^4k)/(6a^2)-(42a^2bw)/(6a^2))^{} \\ =6a^2(3a^2w^{}+28^{}bk^{}-12a^2k^{}-7bw^{})^{} \end{gathered}

Therefore, factoring the expression with the GCF will give;


6a^2(3a^2w^{}+28^{}bk^{}-12a^2k^{}-7bw^{})^{}

User RyanQuey
by
3.9k points