Presuming that the lines l, m and n are parallel and intersecting a single line, the angles measuring 132° and (x + 13)° appears to be a pair of Alternate Interior Angles.
Under this relationship, the two angles must be congruent.
Therefore,
![\text{ (x + 13)}^(\circ)=132^(\circ)](https://img.qammunity.org/2023/formulas/mathematics/college/ocou2lrjpjmnms320rmpk1ch8lafynz87n.png)
Let's determine the value of x,
![\text{ (x + 13)}^(\circ)=132^(\circ)](https://img.qammunity.org/2023/formulas/mathematics/college/ocou2lrjpjmnms320rmpk1ch8lafynz87n.png)
![x^(\circ)\text{ + 13}^(\circ)=132^(\circ)](https://img.qammunity.org/2023/formulas/mathematics/college/92wkacl6t5sscfmdhg28bdc6f36d8807a6.png)
![x^(\circ)\text{ }=132^(\circ)\text{ - 13}^(\circ)](https://img.qammunity.org/2023/formulas/mathematics/college/smarkzk1qc3zogwic78pzs5b9bc5148cdr.png)
![x^{}\text{ }=119^(\circ)](https://img.qammunity.org/2023/formulas/mathematics/college/kjtgu0a2r4rs1ys0rkk1d5y3dbkt8zbw56.png)
Therefore, x = 119°