Given: The value of a and the vertex of the following parabola are given
![\begin{gathered} y=ax²+bx+c \\ a=-2 \\ Vertex=(5,8) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4dib81xphblaej80vubrgckcimwao9ln45.png)
Required: To find the x-intercepts of the given parabola.
Explanation: The vertex of the parabola is at (5,8). The x coordinate of the vertex is given by
![x=-(b)/(2a)](https://img.qammunity.org/2023/formulas/mathematics/college/7gr846x3106wifbv8ib3mo7x3lghpti0f2.png)
Hence, putting x=5 and a=-2 we get,
![\begin{gathered} 5=-(b)/((-4)) \\ b=20 \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/nd89wwsc1y3ufo08gg4yenihfqca6n35yz.png)
Now the y coordinate of the vertex is 8, and the value of c can be found by putting x=5 in the equation of the parabola.
![\begin{gathered} 8=-2(5)^2+20(5)+c \\ c=-42 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/rbhjcy3wvd1e0brujaiay4v5cnnazoo95d.png)
Hence the equation of the parabola is
![y=-2x^2+20x-42](https://img.qammunity.org/2023/formulas/mathematics/college/4rs2ecrbz0grllgwczsd4q6pguqa1kchuy.png)
The x-intercepts can be determined by putting y=0 as follows
![-2x^2+20x-42=0](https://img.qammunity.org/2023/formulas/mathematics/college/2gfl9o81dext5l2phx1b73093077fsd3k2.png)
which gives,
![\begin{gathered} x^2-10x+21=0 \\ (x-7)(x-3)=0 \\ x=7\text{ and} \\ x=3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xa75pdiflcpdeu29vu8xyiu0935m4igf00.png)
Following is the graph
Final Answer: The parabola has 2 x-intercepts and the vertex lies above the x-axis.