width : 4 ft
length: 10 ft
Step-by-step explanation
Step 1
let L represents the length of the table
Let W represents the width of the table
if
The length of a Ping-Pong table is 2 feet less than twice the width.
![\begin{gathered} L=2\cdot\text{width -2} \\ L=2w-2\text{ Equation(1)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/f9zy3ko2d2nibgvekb5j34or6sdv3vh6nv.png)
and the area of the Ping-Pong table is 40 square feet
![\begin{gathered} A=width\cdot length \\ A=40ft^2 \\ so \\ \text{width}\cdot\text{length}=40ft^2 \\ w\cdot L=40\text{ Equation(2)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3slpsqadhng5rt3ylhuzp3u2yrsn6nwfdu.png)
Step 2
solve the system of equations
![\begin{gathered} L=2w-2\text{ Equation(1)} \\ w\cdot L=40\text{ Equation(2)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/oy7iq096kb1o9vxqyzvrzqtdv9d80k9ceq.png)
a)replace equation(1) in equation (2)
![\begin{gathered} w\cdot L=40\text{ Equation(2)} \\ w\cdot(2w-2)=40\text{ } \\ 2w^2-2w=40 \\ \text{subtract 40 in both sides} \\ 2w^2-2w-40=40-40 \\ 2w^2-2w-40=0\text{ }\Rightarrow ax^2+bx+c=0 \\ \text{Hence, use the quadratic formula to find w} \\ x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a} \\ w=\frac{-(-2)\pm\sqrt[]{(-2)^2-4(2)(-40)}}{2\cdot2} \\ w=\frac{2\pm\sqrt[]{4+320}}{4} \\ w=(-2\pm18)/(4) \\ we\text{ just take the positive number, so} \\ w=(-2+18)/(4)=(16)/(4)=4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/u1tc1sbuk5igbg65gas2l8hrzhz23yo9qz.png)
therefore, the width is 4 ft
Step 3
finally,replace the valuw of w in equation (2) to find L
![\begin{gathered} w\cdot l=40 \\ L=(40)/(w) \\ L=(40)/(4) \\ L=10\text{ ft} \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8sh8usovg0x860g94kgl9q7tjkgmgficg0.png)
so, the length is 10 ft