114k views
4 votes
Number 2 investigate the following limits using graph and table, Record at least 5 values of the function on either side of a. Tell what the limit is, if it doesn’t exist explain why ? Use the x values -0.03, -0.02, -0.01, 0, 0.01, 0.02

Number 2 investigate the following limits using graph and table, Record at least 5 values-example-1

1 Answer

3 votes

We were given:


\begin{gathered} \lim _(x\to0)(|x|)/(4x) \\ \Rightarrow(x)/(4x)=(1)/(4) \\ \Rightarrow\lim _(x\to0)(1)/(4) \\ \lim _(x\to0)(1)/(4)=(1)/(4) \\ =(1)/(4) \\ \\ \lim _(x\to-0.03)(|x|)/(4x) \\ \Rightarrow(x)/(4x)=(1)/(4) \\ \Rightarrow\lim _(x\to-0.03)(1)/(4)=(1)/(4) \\ =(1)/(4) \\ \\ \lim _(x\to-0.02)(|x|)/(4x) \\ \Rightarrow(x)/(4x)=(1)/(4) \\ \Rightarrow\lim _(x\to-0.02)(1)/(4)=(1)/(4) \\ =(1)/(4) \end{gathered}

We proceed, we have:


\begin{gathered} \lim _(x\to-0.01)(|x|)/(4x) \\ \Rightarrow(x)/(4x)=(1)/(4) \\ \Rightarrow\lim _(x\to-0.03)(1)/(4)=(1)/(4) \\ =(1)/(4) \\ \\ \lim _(x\to0.01)(|x|)/(4x) \\ \Rightarrow(x)/(4x)=(1)/(4) \\ \Rightarrow\lim _(x\to0.01)(1)/(4)=(1)/(4) \\ =(1)/(4) \\ \\ \lim _(x\to0.02)(|x|)/(4x) \\ \Rightarrow(x)/(4x)=(1)/(4) \\ \Rightarrow\lim _(x\to0.02)(1)/(4)=(1)/(4) \\ =(1)/(4) \end{gathered}

Therefore, for the limit is 1/4

User Matthew Underwood
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories