Let's determine the compund functions, firts.
1) already solved.
2) h(m(x)):
![h(m(x))=h(x^2-4)=\frac{1}{\sqrt[]{(x^2-4)^{}}}](https://img.qammunity.org/2023/formulas/mathematics/college/6f393iff0c4rxx7xd8nqnpzt62whbeuu1m.png)
3) m(h(x)):
![m(h(x))=m(\frac{1}{\sqrt[]{x}})=(\frac{1}{\sqrt[]{x}})^2-4](https://img.qammunity.org/2023/formulas/mathematics/college/u5oors4k46cv98dr4z9uw3u0z0z650q84s.png)
Let's work with equation 2. We need to simplify it.
![\begin{gathered} \frac{1}{\sqrt[]{(x^2-4)^{}}}\cdot(√(x^2-4))/(√(x^2-4)) \\ =(1\cdot√(x^2-4))/(√(x^2-4)√(x^2-4)) \\ =(√(x^2-4))/(x^2-4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ilourcwphymzhnhzx5w1ogr44il2vp20xv.png)
Now, let's stablish the conditions to find its domain:
Cond. 1)
![x^2-4\\e0](https://img.qammunity.org/2023/formulas/mathematics/college/eevkdq7a448g0o1ibuzc213ou2i0sxjdqi.png)
Cond. 2)
![x^2-4>0](https://img.qammunity.org/2023/formulas/mathematics/college/z8tg3qm4mdrhwbzz7p3z8soz6mcr8b7gvc.png)
condition 2 implicitly includes condition 1, then we will work from it
![\begin{gathered} x^2-4>0 \\ x^2-4+4>0+4 \\ x^2>4 \\ x<-√(4)\quad \mathrm{or}\quad \: x>√(4) \\ x<-2\quad \mathrm{or}\quad \: x>2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/v4h407c75ae7izmcgyioz6y4l239tn25mr.png)
in interval notation:
![\mleft(-\infty\: ,\: -2\mright)\cup\mleft(2,\: \infty\: \mright)](https://img.qammunity.org/2023/formulas/mathematics/college/t77q7b4lk4vlpmnm19nhsxdbqh2xn6d49y.png)
Now, let's work with the 3rd compound function
![(\frac{1}{\sqrt[]{x}})^2-4](https://img.qammunity.org/2023/formulas/mathematics/college/v9gctnh0d6zanbco75vg9p8xgq6h0o09q6.png)
In this case, x must be greater than and different from zero. Therefore, the domain will be:
![x>0](https://img.qammunity.org/2023/formulas/mathematics/college/9g6avurfn47fuav1umw161qajqcc8ctv8p.png)
in interval notation:
![\mleft(0,\: \infty\: \mright)](https://img.qammunity.org/2023/formulas/mathematics/college/szgyyj0lc5rav7ocadbseltdpun9pslvyk.png)