Given a normal random distribution with mean μ and standard deviation σ:
![\begin{gathered} \mu=121 \\ \sigma=23 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/lf87jxrml5dy1fc28elyoc1j667qhvo70g.png)
The z-score can be calculated using the formula:
![Z=(X-\mu)/(\sigma)](https://img.qammunity.org/2023/formulas/mathematics/college/co2uo0sflf7j97dkra9frcbp0azbu023bz.png)
Where X is a value of the normal random distribution. We need the probability that a randomly selected utility bill is between $115 and $130. The z-scores of these values are:
![\begin{gathered} Z_1=(115-121)/(23)=-(6)/(23)\approx-0.26087 \\ Z_2=(130-121)/(23)=(9)/(23)\approx0.39130 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/w6uufo9ht04bd672mfys2k9ko9kjwcx3wv.png)
Then, we need to calculate the probability of:
![P(Z_1\leq Z\leq Z_2)=P(-0.26087\leq Z\leq0.39130)](https://img.qammunity.org/2023/formulas/mathematics/college/r0zkzix7fb9jhe5fiklhzae9zqy88lslod.png)
Using the tables of the z-distribution, this probability is:
![P(-0.26087\leq Z\leq0.39130)\approx0.255](https://img.qammunity.org/2023/formulas/mathematics/college/wyt8rxlce5sbm8o2ybtbf5ht185owfnavm.png)