SOLUTION
The points are
![(-7,0)\text{ and (0,1)}](https://img.qammunity.org/2023/formulas/mathematics/college/rtuhq99x746cadcnr52wk83j5h7bykct6k.png)
The equation is writing using the formula below
![(y-y_1)/(x-x_1)=(y_2-y_1)/(x_(2-)x_1)_{}](https://img.qammunity.org/2023/formulas/mathematics/college/jan9qabq9iusbh0po3turdnodzlywrjxhs.png)
where
![x_2=0,x_1=-7,y_2=1,y_1=0](https://img.qammunity.org/2023/formulas/mathematics/college/quc3qyb6qmpptakl61y94t0bws3pejqrx6.png)
Then, we substitute the parameters into the formula above
![\begin{gathered} (y-y_1)/(x-x_1)=(y_2-y_1)/(x_(2-)x_1)_{} \\ (y-1)/(x-(-7))=(1-0)/(0-(-7)) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4uf7ax33lscypxdz19pfd0nbx0lcqoc67o.png)
Simplifying further, we have
![\begin{gathered} (y-1)/(x+7)=(1)/(7) \\ 7(y-1)=x+7 \\ 7y-7=x+7 \\ 7y-x-14=0 \\ 7y=x+14 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/djtmqvhz8yd1h3btls3yb03xih7ncxrzfy.png)
Then in the slope-intercept form, we have the equation as
![y=(1)/(7)x+2](https://img.qammunity.org/2023/formulas/mathematics/college/e7cbliav0koldtzzjn4xq5yf6dgk4jj6eo.png)
Therefore the equation of the line in the slope-intercept form is
y=(1/7)x +2