The first thing is to calculate the slopes of the mentioned lines:
The slope has te following formula:
![s\text{ = }\frac{y_2\text{ }-y_1}{x_2-x_1}](https://img.qammunity.org/2023/formulas/mathematics/college/yfw40vg0r37imq7mg2st6n0ikp96hh3s3r.png)
A. The slope of (f) is - 1/5
Cordinates of f:
(-5, 3) and (5, 1)
![s\text{ = }(1-3)/(5-(-5))\text{ = }(-2)/(10)\text{ = - }(1)/(5)](https://img.qammunity.org/2023/formulas/mathematics/college/u7fkc0mao9qxczonk4sni16on855ar5s4m.png)
A is true
B. The slope of (d) is - 1/5
Cordinates of d:
(-5, -1) and (5, -4)
![s\text{ = }((-4)-(-1))/(5-(-5))\text{ = }(-3)/(10)](https://img.qammunity.org/2023/formulas/mathematics/college/mn9s099dsroc5dvfdycc7z5be8jxpmc7im.png)
B is false
C. The slope of (a) is 5/2
Cordinates of a:
(-5, -5) and (-1, 5)
![s=\text{ }(5-(-5))/((-1)-(-5))=(10)/(4)=(5)/(2)](https://img.qammunity.org/2023/formulas/mathematics/college/nog0gfccs98nn1t9uk3yb8xpwulhazmtwt.png)
C is true
D. The slope of (b) is - 5/2
Cordinates of b:
(-3.5, -5) and (0.5, 5)
![s\text{ = }\frac{5\text{ - (-5)}}{0.5\text{ - (-3.5)}}\text{ = }(10)/(4)\text{ = }(5)/(2)](https://img.qammunity.org/2023/formulas/mathematics/college/p9jug6nrjwxgwv1xwjfimypqqitki05b9i.png)
D is false
thefore only A and C are true
The slope de (c):
Cordinates of c:
(0, -5) and (4, 5)
![s\text{ = }(5-(-5))/(4-0)=\text{ }(10)/(4)=(5)/(2)](https://img.qammunity.org/2023/formulas/mathematics/college/byjsiryktpe4nuh2crziogaytuor0cx16x.png)
The slope de (e):
Cordinates of e:
(-5, 0) and (5, -2)
![\text{ s = }\frac{(-2)-0}{5\text{ - (-5) }}\text{ = }(-2)/(10)=-(1)/(5)](https://img.qammunity.org/2023/formulas/mathematics/college/i0zmf4k51teucfgbu9uin1a6kx49d7xwsr.png)