68.0k views
1 vote
78.6 grams of O2 and 67.3 grams of F2 are placed in a container with a volume of 40.6 L. Find the total pressure if the gasses are at a temperature of 43.13 °C.

1 Answer

4 votes

1) List the known and unknown quantities.

Sample: O2.

Mass: 78.6 g.

Volume: 40.6 L.

Temperature: 43.13 ºC = 316.28 K.

Sample: F2.

Mass: 67.3 g.

Volume: 40.6 L.

Temperature: 43.13 ºC = 316.28 K.

2) Find the pressure of O2.

2.1- List the known and unknown quantities.

Sample: O2.

Mass: 78.6 g.

Volume: 40.6 L.

Temperature: 43.13 ºC = 316.28 K

Ideal gas constant: 0.082057 L * atm * K^(-1) * mol^(-1).

2.2- Convert grams of O2 to moles of O2.

The molar mass of O2 is 31.9988 g/mol.


mol\text{ }O_2=78.6\text{ }g*\frac{1\text{ }mol\text{ }O_2}{31.9988\text{ }g\text{ }O_2}=2.46\text{ }mol\text{ }O_2

2.3- Set the equation.

Ideal gas constant: 0.082057 L * atm * K^(-1) * mol^(-1)


PV=nRT

2.4- Plug in the known quantities and solve for P.


(P)(40.6\text{ }L)=(2.46\text{ }mol\text{ }O_2)(0.082057\text{ }L*atm*K^(-1)*mol^(-1))(316.28\text{ }K)

.


P_(O_2)=\frac{(2.46\text{ }mol\text{ }O_2)(0.082057\text{ }L*atm*K^(-1)*mol^(-1))(316.28\text{ }K)}{40.6\text{ }L}
P_(O_2)=1.57\text{ }atm

The pressure of O2 is 1.57 atm.

3) Find the pressure of F2.

3.1- List the known and unknown quantities.

Sample: F2.

Mass: 67.3 g.

Volume: 40.6 L.

Temperature: 43.13 ºC = 316.28 K.

Ideal gas constant: 0.082057 L * atm * K^(-1) * mol^(-1).

3.2- Convert grams of F2 to moles of F2.

The mmolar mass of F2 is 37.9968 g/mol.


mol\text{ }F_2=67.3\text{ }g\text{ }F_2*\frac{1\text{ }mol\text{ }F_2}{37.9968\text{ }g\text{ }F_2}=1.77\text{ }mol\text{ }F_2

3.3- Set the equation.

Ideal gas constant: 0.082057 L * atm * K^(-1) * mol^(-1)


PV=nRT

3.4- Plug in the known quantities and solve for P.


(P)(40.6\text{ }L)=(1.77\text{ }mol\text{ }F_2)(0.082057\text{ }L*atm*K^(-1)*mol^(-1))(316.28\text{ }K)

.


P_(F_2)=\frac{(1.77molF_2)(0.082057L*atm*K^(-1)*mol^(-1))(316.28K)}{40.6\text{ }L}
P_(F_2)=1.13\text{ }atm

The pressure of F2 is 1.13 atm.

4) The total pressure.

Dalton's law - Partial pressure. This law states that the total pressure of a gas is equal to the sum of the individual partial pressures.

4.1- Set the equation.


P_T=P_A+P_B

4.2- Plug in the known quantities.


P_T=1.57\text{ }atm+1.13\text{ }atm
P_T=2.7\text{ }atm

The total pressure in the container is 2.7 atm.

User Tall Jeff
by
8.5k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.