64.3k views
5 votes
Find the perimeter of the triangle with vertices at A(0,0), B(-4,-3), and C(-8,0)

User Radubogdan
by
8.6k points

1 Answer

3 votes

Answer:

18units

Step-by-step explanation:

Given the vertices of a triangle A(0,0), B(-4,-3), and C(-8,0)​

Perimeter of the triangle = AB + BC + AC

Using the distance formula;


D=\sqrt[]{(x_2-x_1)^2+(y_2-y_1)^2}

Get AB;


\begin{gathered} AB=\sqrt[]{(-3_{}-0_{})^2+(-4_{}-0_{})^2} \\ AB=\sqrt[]{9_{}+16} \\ AB=\sqrt[]{25} \\ AB=5\text{units} \end{gathered}

Get the distance BC;


\begin{gathered} BC=\sqrt[]{(0-(-3))^2_{}+(-8-(-4))^2} \\ BC=\sqrt[]{3^2+(-4)^2} \\ BC=\sqrt[]{9+16} \\ BC=\sqrt[]{25} \\ BC=5\text{units} \end{gathered}

Get the distance AC:


\begin{gathered} AC=\sqrt[]{(0-0)^2+(-8-0)^2} \\ AC=\sqrt[]{(-8)^2} \\ AC=\sqrt[]{64} \\ AC=8\text{units} \end{gathered}

Get the perimeter;

Perimeter of the triangle = 5 + 5 + 8

Perimeter of the triangle = 18units

User Parrish
by
8.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories