Answer:
The measure of angle b is;
![b=30^(\circ)](https://img.qammunity.org/2023/formulas/mathematics/college/qs2ubb5q4yrx1z2nufb7qnl0ibfzaaxclz.png)
Step-by-step explanation:
Given the figure in the attached image.
line m and n are parallel lines.
To solve for angle b, let x represent the corresponding angle to angle 120 degree, as shown below;
So, angle x is equal to 120 degree.
![x=120^(\circ)](https://img.qammunity.org/2023/formulas/mathematics/college/mi85pdfj2p6zrliy0egkglwkmk41yj8dym.png)
Reason: corresponding angle.
Angle x is an exterior angle to the triangle alog the line n.
So, angle x equals the sum of angle b and 90 degree.
![\begin{gathered} x=b+90^(\circ) \\ b=x-90^(\circ) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/u434jn9h2w9h495a6e1qyk7i61pt4u1o2b.png)
Reason: Exterior angle theorem of a triangle.
substituting the value of x;
![\begin{gathered} b=x-90^(\circ) \\ b=120^(\circ)-90^(\circ) \\ b=30^(\circ) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/cxq07vfy4x7cway8slt8lzf8x8b4alrhx1.png)
Therefore, the measure of angle b is;
![b=30^(\circ)](https://img.qammunity.org/2023/formulas/mathematics/college/qs2ubb5q4yrx1z2nufb7qnl0ibfzaaxclz.png)