Given the points (1, 12) and (-1, 0.75)
We will write the exponential function that includes the given points
Let the expression of the function will be as follows:
![f(x)=a\cdot b^x](https://img.qammunity.org/2023/formulas/mathematics/college/53qy1lhggvjad0vnt1ozli3ynbybkwicpn.png)
When x = 1, f = 12
so,
![12=a\cdot b\rightarrow(1)](https://img.qammunity.org/2023/formulas/mathematics/college/uqm5shcmn10xwm5rkf0dvt1n4q92z4akhl.png)
When x = -1, f = 0.75
So,
![\begin{gathered} 0.75=a\cdot b^(-1) \\ 0.75=(a)/(b)\rightarrow(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/i4ssv7ixhr3ybn1swlft6c82l3xdiyv6ow.png)
Solve the equations (1) and (2) to find (a) and (b)
Multiply the equations to eliminate (b)
![\begin{gathered} 12\cdot0.75=a^2 \\ a^2=9 \\ a=\sqrt[]{9}=3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8s5gd3puwcjaa8j60wsg9f9d6r6u52b2hm.png)
Substitute with (a) into equation (1) to find (b)
![\begin{gathered} 12=3b \\ b=(12)/(3)=4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/jceyjno9vi6ymbunylwunyq2mf8pj5kw0m.png)
So, the answer will be:
The equation of the exponential function will be as follows:
![f(x)=3\cdot4^x](https://img.qammunity.org/2023/formulas/mathematics/college/cgx9s4hfd6cjb008bgpjwvcc5d7yarwxcm.png)