1) Create a real-world problem involving a related set of two equations
George bought 5 apples and 2 peaches, he pays $22.00. Isabella bought 10 apples and 2 peaches, she pays $32.00. a) How much does an apple cost? b) How much does a peach cost?
2)Write the system of equations that would be used to solve them.
Let x be the cost of an apple
Let y be the cost of a peach
George bought 5 apples and 2 peaches, he pays $22.00:
![5x+2y=22](https://img.qammunity.org/2023/formulas/mathematics/college/by5useyinm3df5chy2eueiqfmovvo1plrz.png)
Isabella bought 10 apples and 2 peaches, she pays $32.00:
![10x+2y=32](https://img.qammunity.org/2023/formulas/mathematics/college/gse2165oc7ifg426y6uncuzlgudgsxcufw.png)
System of equations:
![\begin{gathered} 5x+2y=22 \\ 10x+2y=32 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/y22uch480w0xgthcy8gc76dido1zup16f3.png)
3) Show how to solve the same system using ALL 3 methods:
• Graphing
Find two points (x,y) for each equation:
-First equation:
![\begin{gathered} When\text{ }x=0 \\ 5(0)+2y=22 \\ 2y=22 \\ y=(22)/(2) \\ y=11 \\ Point(0,11) \\ \\ When\text{ }x=6 \\ 5(6)+2y=22 \\ 30+2y=22 \\ 2y=22-30 \\ 2y=-8 \\ y=-(8)/(2) \\ y=-4 \\ Point(6,-4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5l5cptr91tfd07cryk4f5u8361cg0jn7e5.png)
-Second equation:
![\begin{gathered} When\text{ }x=0 \\ 10(0)+2y=32 \\ 2y=32 \\ y=(32)/(2) \\ y=16 \\ Point(0,16) \\ \\ When\text{ }x=4 \\ 10(4)+2y=32 \\ 40+2y=32 \\ 2y=32-40 \\ 2y=-8 \\ y=-(8)/(2) \\ y=-4 \\ Point(4,-4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/1oa2n1hwgqsfsamvjqwb4vfj0ll4nrt1k3.png)
Use each pair of points to graph the corresponding line: Put the point in the plane and draw a line that passes through the corresponding pair of points:
The solution is the point of intersection (2,6)
• Substitution:
![\begin{gathered} 5x+2y=22 \\ 10x+2y=32 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/y22uch480w0xgthcy8gc76dido1zup16f3.png)
1. Solve x in the first equation:
![\begin{gathered} 5x+2y=22 \\ 5x=22-2y \\ x=(22)/(5)-(2)/(5)y \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/2nugbpwa29h496z2ncjcp4oyh65kb7ldq4.png)
2. Substitute x in the second equation with the value you get in the first step:
![10((22)/(5)-(2)/(5)y)+2y=32](https://img.qammunity.org/2023/formulas/mathematics/college/hjuchjnj1l8i0sj14zqo5eqqt5kraq57dx.png)
3. Solve y:
![\begin{gathered} (220)/(5)-(20)/(5)y+2y=32 \\ \\ 44-4y+2y=32 \\ \\ 44-2y=32 \\ \\ -2y=32-44 \\ \\ -2y=-12 \\ \\ y=(-12)/(-2) \\ \\ y=6 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/pwqgzpgd4dgoz39t6zy0lgbpg746syj64g.png)
4. Use the value of y to solve x:
![\begin{gathered} x=(22)/(5)-(2y)/(5) \\ \\ x=(22)/(5)-(2(6))/(5) \\ \\ x=(22)/(5)-(12)/(5) \\ \\ x=(22-12)/(5) \\ \\ x=(10)/(5) \\ \\ x=2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5u5mdmtocp2afm1qjngpfnlpcptaewhrfk.png)
The solution is (2,6)
• Elimination:
![\begin{gathered} 5x+2y=22 \\ 10x+2y=32 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/y22uch480w0xgthcy8gc76dido1zup16f3.png)
1. Subtract the equations:
2. Solve x:
![\begin{gathered} -5x=-10 \\ x=(-10)/(-5) \\ x=2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/o8mbmz7i9z3iam08hu32yyaxi7rzdop0zt.png)
3. Use the value of x to solve y:
![\begin{gathered} 5x+2y=22 \\ 5(2)+2y=22 \\ 10+2y=22 \\ 2y=22-10 \\ 2y=12 \\ y=(12)/(2) \\ y=6 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/n0ywaf5i167ge7rmo5jbugxh0lgtsgjdhz.png)
The solution is (2,6)
4) Identify your solution & explain what it means in the context of your word problem!
The solution is (2,6), x=2, y=6
The meaning of the solution is: The cost of an apple is $2.00 and the cost of a peach is $6.00