To solve the equation
![x\text{ + }(4)/(5)=11](https://img.qammunity.org/2023/formulas/mathematics/college/s2rg98z98qtt5ujrxfsu4a74ed44mceav0.png)
First, subtract 4/5 to both sides of the equation, and then make the corresponding operations:
![x\text{ + }(4)/(5)-(4)/(5)=\text{ 11 - }(4)/(5)](https://img.qammunity.org/2023/formulas/mathematics/college/ux10pfqnxa1tnn2p7vvlkqfw64k762bw88.png)
![x\text{ + 0 = 11 -}(4)/(5)](https://img.qammunity.org/2023/formulas/mathematics/college/hhsbf0hjbattmjwqafh733p1sksko8xk4i.png)
We can solve 11 - (4/5) multiplying the denominator 5 by 11, and then the denominator of 11, which is 1, by -4. Then divide the numerator by the multiplication of both denominators (1 * 5= 5).
![x\text{ = }\frac{(11\cdot5)\text{ - (1}\cdot4)}{5\cdot1}](https://img.qammunity.org/2023/formulas/mathematics/college/4vwas3p8owqwo3pzpm9z7jnsmj6comnmv4.png)
![x\text{ =}(55-4)/(5)=(51)/(4)](https://img.qammunity.org/2023/formulas/mathematics/college/wrz0rnm45lmut48cz626ebl5fck99ncxb6.png)
To check, we have:
![(51)/(4)+(4)/(5)\text{ = 11}](https://img.qammunity.org/2023/formulas/mathematics/college/87uwo22f0am87kehm52nc2u76g062dzanp.png)