Given:
The given quotient is,
![(√(50))/(√(10))](https://img.qammunity.org/2023/formulas/mathematics/college/djkxixnhhbn6cknw62ysztfb3vn2hz8g4d.png)
Required:
To check all that are equivalent to the given quotient.
Answer:
We have the quotient given by,
![(√(50))/(√(10))](https://img.qammunity.org/2023/formulas/mathematics/college/djkxixnhhbn6cknw62ysztfb3vn2hz8g4d.png)
Then squaring on numerator and denominator, we get,
![\begin{gathered} ((√(50))^2)/((√(10))^2) \\ =(50)/(10) \\ =5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/70gp7upaok7aqq2hjkpauha0y7z6kzldy7.png)
Next,the given quotient can also be written as:
![\begin{gathered} (√(50))/(√(10)) \\ =\sqrt{(50)/(10)} \\ =√(5) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/vsg5xi2u9ri6chw5omf4y5q0c34eqgjbeh.png)
Now, dividing by 2 on both numerator and denominator inside the square root, we get,
![\begin{gathered} \frac{\sqrt{(50)/(2)}}{\sqrt{(10)/(2)}} \\ =(√(25))/(√(5)) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ic4s2r50zthzl49bixirrqpppu1wwke6vh.png)
Final Answer:
The given quotient is equivalent to
![\begin{gathered} 5 \\ √(5) \\ (√(25))/(√(5)) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3s84uuemjw44b5ikm5us60di8mgqrde8yb.png)
Options B,D and F are correct.