The basketball is a sphere of radius(r) 4.5 inches.
![r=(diameter)/(2)=(9)/(2)=4.5\text{ inches}](https://img.qammunity.org/2023/formulas/mathematics/college/4rfrluny8pcmowsjovdohl8jl94i8wvpm9.png)
By formula,
Area of a Sphere is given below:
![\begin{gathered} A=4\pi r^2 \\ \text{Where A =area ; r=radius=4.5 inches} \\ \text{Substituting these values in the formula above, we get} \\ A=4*(22)/(7)*(4.5)^2=254.571\text{ }\approx\text{ 254.57 square inches} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/b93h5o9cupwofn1ezjk6vesre8im8m25tm.png)
The exact material needed for each basketball is 254.57 square inches
b. The surface area of each box is a cuboid.
The surface Area of a cuboid is given by the formula below:
![\begin{gathered} SA=2(lb+lh+bh) \\ \text{Where l=10 inches ; b=12 inches ; and h=10 inches ; SA = surface area} \\ SA=2\lbrack(10*12)\text{ +(10}*10)+(12*10)\rbrack \\ SA=2(120+100+120) \\ SA=2*340=680\text{ square inches} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ezeicl1pvqsosxkr5ppli01nw8vwayop98.png)
Thus, the square inches of cardboard needed for each box is 680 square inches.