Answer;
![\begin{gathered} \text{Length = 38 ft} \\ \text{Width = 13 ft} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/gwa4ts924v3h3nu537426dei1cr606oj6w.png)
Explanation;
Here, we want to get the length and width of the rectangle
Let the length of the rectangle be x ft
Let the width of the rectangle be w ft
From the question, the length is 12 ft more than twice the width
We have this as;
![l\text{ = 12 + 2w}](https://img.qammunity.org/2023/formulas/mathematics/college/46qxs1kif5bhugekdh49ftjkg2fgyvktrm.png)
Mathematically, the formula for the perimeter of a rectangle is;
![P\text{ = 2(l+w)}](https://img.qammunity.org/2023/formulas/mathematics/high-school/fig2v690wedk1u5ish6e6edjifeuco24wk.png)
Now, substitute the value for l above and perimeter from the question
We have that as;
![\begin{gathered} 102\text{ = 2(12+2w+w)} \\ 51\text{ = 12 + 3w} \\ 3w\text{ = 51-12} \\ 3w\text{ = 39} \\ w\text{ = }(39)/(3) \\ w\text{ = 13 ft} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/dbe6vl5hl93l9xwy7gk6k7qv327qu5nuj3.png)
Recall;
![\begin{gathered} l\text{ = 12+2w} \\ l\text{ = 12+2(13)} \\ l\text{ = 12+26} \\ l\text{ = 38 ft} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/gm1arxgzjr8jo1qpetgkbw86lnlj2uph0h.png)