Answer:
B. cos θ = -1/2
Step-by-step explanation:
To determine the equation in which the value of θ is a positive value, we solve each of the equations in radians:
![\begin{gathered} \tan \theta=-\frac{\sqrt[]{3}}{3}\implies\theta=\tan ^(-1)(-\frac{\sqrt[]{3}}{3})=-0.5236 \\ \cos \theta=-(1)/(2)\implies\theta=\cos ^(-1)(-(1)/(2))=2.0944 \\ \sin \theta=-\frac{\sqrt[]{3}}{2}\implies\theta=\sin ^(-1)(-\frac{\sqrt[]{3}}{2})=-1.0472 \\ \csc \theta=-1\implies-(\pi)/(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9illkvbakej0nu8oex3cwc9afkd2zw4t6r.png)
From the above, we see that only cos θ gives a positive value in radians.
The correct equation is B.