We know that the height is given by the equation:
![h(t)=-16t^2+vt+h_0](https://img.qammunity.org/2023/formulas/mathematics/college/ojed32akilvgvi1l91ookfjwt6g9j10kk5.png)
in this case the initial velocity is 72 ft/s and the inital height is 25 ft. Plugging this values the height function for the ball is:
![h(t)=-16t^2+72t+25](https://img.qammunity.org/2023/formulas/mathematics/college/ghe9gccxvqlnupy7a6gui0fy56vxfmn064.png)
If we want to know the height after 4 seconds we evaluate the function at t=4, then we have:
![\begin{gathered} h(4)=-16(4)^2+72(4)+25 \\ h(4)=57 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/jic9mb66ssozcngpvdgq46rpxr0airvwiv.png)
Therefore the height of the ball after four seconds is 57 ft.