Question:
Solution:
We can apply the Law of Cosines. This law establishes the following: consider the following triangle:
then, we can find the side C by the following equation:
![c\text{ = }\sqrt[]{a^2+b^2-2ab\cos \gamma}](https://img.qammunity.org/2023/formulas/mathematics/college/3snd392w6iutjw6732mdjts8fc3b1o0b14.png)
in this case, we have that:
![c\text{ = x}](https://img.qammunity.org/2023/formulas/mathematics/college/s122h9z58ufm2e8tupujo6xwexzmw4lrnz.png)
![a\text{ =30}](https://img.qammunity.org/2023/formulas/mathematics/college/ewz9gexg7zgrr1xvkpm65vqw2ii10740rc.png)
![b\text{ =}23](https://img.qammunity.org/2023/formulas/mathematics/college/8gz18z80h2ncpf75h5q2vv7l94v1dfyzwt.png)
and
![\gamma=\text{ 65}](https://img.qammunity.org/2023/formulas/mathematics/college/zf3uj6rx8xbkembgezjk4nr8p83q3cslus.png)
Replacing these data in the equation of the law of cosines we obtain:
![x\text{ = }\sqrt[]{30^2^{}+23^2-2(30)(23)\cos (65)\text{ }}\text{ }](https://img.qammunity.org/2023/formulas/mathematics/college/bn1yi18392425vp28x5xe6ky42a3qhw3n3.png)
this is equivalent to:
![x\text{ = }\sqrt[]{30^2^{}+23^2-2(30)(23)\cos(65)\text{ }}=\text{ 29.08 }\approx29.1](https://img.qammunity.org/2023/formulas/mathematics/college/1gmrwcabd95i709yc0ylornv5qpjd1j2uy.png)
then, the correct answer is:
![x\text{ =}29.1](https://img.qammunity.org/2023/formulas/mathematics/college/fkzmnhj4ixckrulyx4obac71qah4chbbxm.png)