207k views
4 votes
Find f^ -1(x) f(x)= (4x+3)^2+5

1 Answer

3 votes

Given the following function:


f\mleft(x\mright)=(4x+3)^2+5

You can follow the steps shown below in order to find


f^(-1)(x)

Step 1. You need to rewrite the function using


y=f(x)

Then:


y=(4x+3)^2+5

Step 2. Solve for "x":


\begin{gathered} y-5=(4x+3)^2 \\ \sqrt[]{y-5}=4x+3 \\ \sqrt[]{y-5}-3=4x \\ \\ x=\frac{\pm\sqrt[]{y-5}-3}{4} \\ \\ x=\frac{-3\pm\sqrt[]{y-5}}{4} \end{gathered}

Step 3. Now you must exchange the variables:


y=\frac{-3\pm\sqrt[]{x-5}}{4}

Therefore, the answer is:


f^(-1)(x)=\frac{-3\pm\sqrt[]{x-5}}{4}

User Zihadrizkyef
by
4.4k points