To find the blue area, you have to subtract the area of the small circle from the area of the big circle
The rule of the area of the circle is
![A=\pi(r)^2](https://img.qammunity.org/2023/formulas/mathematics/college/wq9f2312b20w7lb1lsn2yofsl8jrixp2yu.png)
r is the radius of the circle
Then the area of blue is
![A_(blue)=A_(big)-A_(small)](https://img.qammunity.org/2023/formulas/mathematics/college/imvxmv9ipldrnrv1wxxxvvauuut6rqp3uo.png)
Since the radius of the small circle is 3 units and the radius of the big circle is 7 units, then
![\begin{gathered} A_(blue)=\pi(7)^2-\pi(3)^2 \\ A_(blue)=49\pi-9\pi \\ A_(blue)=40\pi \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4kd6vf3gcud31l3hi53c01sz9b6rdajtf1.png)
The exact area of the blue part is a 40pi square unit