To divide the given fractions, we first write each of them as improper fractions.
4 1/4 ÷ 3 1/2
Now,
![4(1)/(4)=4+(1)/(4)](https://img.qammunity.org/2023/formulas/mathematics/college/bwrm3ul1itgvolfzd0gvfubhz3tk64ic4q.png)
![=(4\cdot4)/(4)+(1)/(4)](https://img.qammunity.org/2023/formulas/mathematics/college/5kqitp1hwgwue4gkaynq61h4mt3bisgt9l.png)
![=(16)/(4)+(1)/(4)=(17)/(4)](https://img.qammunity.org/2023/formulas/mathematics/college/616t7l20kxstxymhj5zxqzrxxo7hjms98p.png)
![\therefore4(1)/(4)=(17)/(4)](https://img.qammunity.org/2023/formulas/mathematics/college/hql89rhv2ara0br4oeywej3rl2qx67sy6x.png)
And
![3(1)/(2)=3+(1)/(2)](https://img.qammunity.org/2023/formulas/mathematics/college/o3x72ag49rniyvhj8stwapuinwdct8tqkv.png)
![=(2\cdot3)/(2)+(1)/(2)](https://img.qammunity.org/2023/formulas/mathematics/college/pe3ba0uyucto3g9ig2z8ue9y2u92kf73d2.png)
![\therefore3(1)/(2)=(7)/(2)](https://img.qammunity.org/2023/formulas/mathematics/college/xrnagql92uf7movn2jdonvhzy2wb8zrdkw.png)
Now the division becomes
![(17)/(4)/(7)/(2)](https://img.qammunity.org/2023/formulas/mathematics/college/k3400wbrzoosr5ul7qctma1xol4qwfbny2.png)
Taking the reciprocal of the left-hand fraction and converting division into multiplication gives
![(17)/(4)*(2)/(7)](https://img.qammunity.org/2023/formulas/mathematics/college/34t7eykxh3ylbtvh371hbh6f20yw6hk124.png)
![=(17)/(14)](https://img.qammunity.org/2023/formulas/mathematics/college/v6zzdswphuw9w8rpwhwjzy4e08hi6btes5.png)
Hence,
![4(1)/(4)/3(1)/(2)=(17)/(14)](https://img.qammunity.org/2023/formulas/mathematics/college/tg16imgejenook4er288xp9hab8ojjfiq6.png)
-3.5 ÷ 0.675
We first convert the decimals to fractions.
![-3.5=-\lbrack3+(1)/(2)\rbrack](https://img.qammunity.org/2023/formulas/mathematics/college/grql5hnkf5b54lx19a4nhi260blcd2ht4e.png)
Converting this to an improper fraction gives
![-\lbrack(3\cdot2)/(2)+(1)/(2)\rbrack=-\lbrack(7)/(2)\rbrack](https://img.qammunity.org/2023/formulas/mathematics/college/o0x10fd9h62lgix4uiquosmvm1tludnsb1.png)
Now, 0.675 can be written as
![(675)/(1000)](https://img.qammunity.org/2023/formulas/mathematics/college/dluci77pq5eqgmaevoqmkgl1l0nqcl058k.png)
Therefore, the division can be written as
![-(7)/(2)/(675)/(1000)](https://img.qammunity.org/2023/formulas/mathematics/college/e9thq9j6twgq68vz8l9no68aqyodzp8zhl.png)
Talking the reciprocal of the right-hand fraction gives
![-(7)/(2)*(1000)/(675)](https://img.qammunity.org/2023/formulas/mathematics/college/48qgirtdw03owcn9nfbls9y7lrpodj4g6u.png)
![=-7*(500)/(675)=-(140)/(27)](https://img.qammunity.org/2023/formulas/mathematics/college/yfdchi71cg054opb0u3s6jf9drtptjicmj.png)
Hence,
![-3.5/0.675=-(140)/(27)](https://img.qammunity.org/2023/formulas/mathematics/college/ggyu2q5wdc5k08gnhs9cxarjslozo5ziqu.png)
-2/9 ÷ -3/8
Taking the reciprocal of the right-hand fraction and converting the division into multiplication gives
![-(2)/(9)*(-8)/(3)](https://img.qammunity.org/2023/formulas/mathematics/college/dvp59atrs8yh782f3x6bbfo3bn41petfw0.png)
![=(16)/(27)](https://img.qammunity.org/2023/formulas/mathematics/college/7s5m3lxlkzw7372cvr1wq62z6m2jwpoxxt.png)
![\therefore-(2)/(9)/(-3)/(8)=(16)/(27)](https://img.qammunity.org/2023/formulas/mathematics/college/vwpnxm6xin3vn8avxahlrqnr7r25v3skzr.png)