Given:
a.) Set B contains 14 elements
b.) The total number of elements in either Set A or Set B is 27.
c.) Sets A and B have 13 elements in common.
B = 14 Elements
A ∪ B = 27
A ∩ B = 13
Let's determine how many elements are contained in set A,
![\begin{gathered} \text{ 27 = Set B + Set A} \\ \text{ 27 = 14 + Set A} \\ \text{ Set A = 27 -14} \\ \text{ Set A = 13 Elements} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/bssdqowbbbmyzv0zvzls57nlfrv6895y7v.png)
Therefore, there are 13 Elements in Set A.