The area of a triangle is given by
![A=(b\cdot h)/(2)](https://img.qammunity.org/2023/formulas/mathematics/college/o3w0v57fgc3ozfnxfm7rai8kabdil9q95r.png)
where b is the base and h the height.
If the dimensions are tripled
![\begin{gathered} b\longrightarrow3b \\ h\longrightarrow3h \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/g8mt0xe9h5hi0g7wt6qeuguc4u9epka9q8.png)
then, the new area will be
![\begin{gathered} A^(\prime)=(3b\cdot3h)/(2) \\ A^(\prime)=(9b\cdot h)/(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7qycjb6t3dcg5keazaew2wp8qlxvd634ha.png)
which is equal to
![\begin{gathered} A^(\prime)=9((b\cdot h)/(2)) \\ \sin ce\text{ the old area A is } \\ \\ A=(b\cdot h)/(2) \\ \text{the new are is} \\ A^(\prime)=9\cdot A \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/drcfzur29f2i6m8rmwi10pupuarfy2zv64.png)
In other words, the new area A' will be 9 times the old area A. Since A is equal to 96 cm^2, we get
![\begin{gathered} A^(\prime)=9\cdot96 \\ A^(\prime)=864 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/wtqreq0tbfv0i3dqt6liskr01q5mt7veqq.png)
that is, the new area will be 864 cm^2.