Solution:
Consider the exponential model
![A=883.1e^(0.019t)](https://img.qammunity.org/2023/formulas/mathematics/college/s0a55w4o35tasd0rly7fklot3ijiqqk9uj.png)
Where A is the population, and t is years after 2003. Then if A= 1315 million, the above equation becomes:
![\text{ 1315 x 10}^6\text{ = }=883.1e^(0.019t)](https://img.qammunity.org/2023/formulas/mathematics/college/va3m5d8vfs2pimvgdz2z7mitgumew591xi.png)
solving for the exponential e, we get:
![\text{ }\frac{\text{ 1315 x 10}^6}{883.1}\text{ }=e^(0.019t)](https://img.qammunity.org/2023/formulas/mathematics/college/vqbr9k64wd2ji4oi2vc9luzvqfaieutrsx.png)
that is:
![e^(0.019t)\text{ =1489072.585}](https://img.qammunity.org/2023/formulas/mathematics/college/oxzbwic7cnkab3aky9kklpavpsl45ogi8e.png)
now, applying natural logarithm to both sides of the equation, we obtain:
![ln(e^(0.019t))\text{ =ln(1489072.585)}](https://img.qammunity.org/2023/formulas/mathematics/college/kj7kc183y9pexxmlxdesjyd9umio3do7ez.png)
this is equivalent to:
![^{}\text{ 0.019t=ln(1489072.585)}](https://img.qammunity.org/2023/formulas/mathematics/college/7yztwt0xcypcvtfw5ntx17u5usc1ur4rqn.png)
solving for t, we get:
![^{}\text{t=}\frac{\text{ln(1489072.585)}}{\text{ 0.019}}=(14.21)/(0.019)=748.08](https://img.qammunity.org/2023/formulas/mathematics/college/9o2ww0wyuv4v3765d5ot855sjg0zka0s8p.png)
that is, 748.08 years after 2003, that is, in the year:2751.08
So that, the solution is:
The population of the country will be 1316 million in the year 2751.08 or 748.08 years after 2003.